
E-Payment Systems and
Cryptocurrency Technologies

Spring Semester, 2022

https://course.ie.cuhk.edu.hk/~ierg4004

Prof. Wing C. Lau
wclau@ie.cuhk.edu.hk

http://www.ie.cuhk.edu.hk/~wclau

Introduction to
Smart Contract and Ethereum

Acknowledgements
! The slides used in this lecture are mostly adapted from the following

sources. The copyrights and contribution of the original authors are hereby
acknowledged and recognized:
! Sherman S.M. Chow, IERG5590 Advanced Blockchain, CUHK, 2020.
! Andrew Miller, ECE398 SC: Smart Contracts Security and Blockchain Security,

UIUC, Spring 2018.
! Andreas Antonopoulos, Gavin Wood, Mastering Ethereum – Building Smart

Contracts and DApps, Publisher: O’Reilly, Dec 2018.
! Loi Luu, Ethereum and Smart Contracts, Winter School on Cryptocurrency and

Blockchain Technologies, Shanghai, Jan 2017.
! Foteini Baldimtsi, CS795 Blockchain Technologies, George Mason University,

2017, http://www.baldimtsi.com/teaching/cs795_sp17
! Andrew Miller, ECE/CS 598AM: Cryptocurrency Security, UIUC, Fall 2016.
! A. Narayanan, J. Bonneau, E.W. Felten, A. Miller, S. Goldfeder, J. Clark, Bitcoin

and Cryptocurrency Technologies, Princeton Press, July 2016
http://bitcoinbook.cs.princeton.edu

! Stefan Dziembowski, University of Warsaw,
https://www.crypto.edu.pl/dziembowski-talks
! ©2016 by Stefan Dziembowski. Permission to make digital or hard copies of part or all

of this material is currently granted without fee provided that copies are made only for
personal or classroom use, are not distributed for profit or commercial advantage, and
that new copies bear this notice and the full citation.

http://www.baldimtsi.com/teaching/cs795_sp17
https://www.crypto.edu.pl/dziembowski-talks

Account Balances

Decentralized Consensus
“Blockchain”

Alice: ฿10
Bob: ฿15
Carol: ฿120

Digital currency is just one application on
top of a blockchain

Users
Money

Contracts

Code

Storage

Data

Users
Money

Smart Contracts: user-defined programs running on
top of a blockchain

Decentralized Consensus
“Blockchain”

Definition:

A Smart Contract is a computer program executed in a
secure environment that directly controls digital assets

Bitcoin	transaction	syntax
From	the	previous	lecture	-- “standard”	transactions:

T2 =	 (User	P1 sends	1	BTC	from	T1	to	P2 signature	of	P1	on	[T2])

T3 =	 (User	P2 sends	1	BTC	from	T2	to	P3 signature	of	P2 on	[T3])

P2

P3

Strange transactions:

T2 =	 (User	P1 sends	1	BTC	from	T1	to	P2 signature	of	P1	on	[T2])

T3 =	 (User	P2 sends	1	BTC	from	T2	to	P3 signature	of	P2 on	[T3])

P2

P3

T2 =	 a	condition	C2 to	spend	T2 a	“witness	W2”

T3 =	 a	“witness	W3”

P2

P3

T1
1	
BTC

T2
1	
BTC a	condition	C3	to	spend	T3

a	Boolean	function

Standard	transactions:

Example:	“Alice	gives	1	BTC	to	the	Bob if	
he	factors	2501.”

T2 =	

can	be	spent	using	Bob’s	
signature	and	p	and	q

such	that	p,q >	1	
and	pq =	2501

Alice’s	
signature

T1
1	
BTC

T3 =	
can	be	spent	using

Bob’s	signature

p=41
q=61
Bob’s	

signature	
on	[T3]

T2
1	
BTC

Alice	posts:

T1	--- earlier	transaction	that	can	be	spent	by	Alice

Bob claims	the	
money	by	posting:

aka:
T3	redeems	T2	

formally:
C([T],(p,q,))	=	true	iff
p,q>1	&	pq=2501

and	 is	Bob’s	signature	on	[T]

Redeeming	condition

T3 redeems T2 if
C2evaluates	to true on	input	([T3],W3).

Note:	in	the	the	standard	transactions:
C2([T3],W3)	=	Vrfy(pk2,[T3],W3)

[T3]

T2 =	 a	condition	C2 to	spend	T2 a	“witness	W2”

T3 =	 a	“witness	W3”

P2

P3

T1
1	
BTC

T2
1	
BTC a	condition	C3	to	spend	T3

How	are	the	conditions	written?
In	Bitcoin scripting	language	for	
its	Strange	Transactions	
(non-Turing	complete	stack-based)

Example:
OP_DUP OP_HASH160
02192cfd7508be5c2e6ce9f1b6312b7f268476d2
OP_EQUALVERIFY OP_CHECKSIG

Bitcoin contracts
The	“Strange	transactions”	can	be	used	to	create	the	
“Bitcoin	contracts”.

Simple	examples:

• Payment	channels	
Pay	money	to	anyone	who	knows	some	password.

• Assurance	contracts.
Put	a	“deposit”	to	prove	you	are	not	a	spammer.
Pay	money	only	if	some	event	happens	(may	require	an	oracle).

More	advanced	examples:	
• ‘’Decentralized	organizations”
• Secure	multiparty	computation	protocols	
[Andrychowicz,	D.,	Malinowski,	Mazurek,	2014,	Bentov
and	Kumaresan	2014].

Contracts

Code

Storage

Data

Users
Money

Smart	Contracts:	user-defined	programs	running	on	
top	of	a	blockchain

Decentralized	Consensus
“Blockchain”

Definition:	

A	Smart	Contract	is	a	computer	program	executed	in	a
secure	environment	that	directly	controls	digital	assets

History	of	“Smart	contracts”:
conceptualized	by	Szabo	in	1994

A	smart	contract	is	a	computerized	transaction	protocol	that	
executes	the	terms	of	a	contract.	The	general	objectives	are	to	
satisfy	common	contractual	conditions	(such	as	payment	terms,	
liens,	confidentiality,	and	even	enforcement),	minimize	exceptions	
both	malicious	and	accidental,	and	minimize	the	need	for	trusted	
intermediaries.	Related	economic	goals	include	lowering	fraud	
loss,	arbitrations	and	enforcement	costs,	and	other	transaction	
costs.

-Nick	Szabo	“The	Idea	of	Smart	Contracts”

A	Concise	and	General	Definition	of	
Smart	Contract

A	smart	contract	is	a	computer	program	executed	in	a	
secure	environment	that	directly	controls	digital	
assets

14

A	Concise	and	General	Definition	of	
Smart	Contract	(cont’d)

A	smart	contract	is	a	computer	program	executed	in	a	
secure	environment	that	directly	controls	digital	
assets

15

A	Concise	and	General	Definition	of	
Smart	Contract	(cont’d)

A	computer	program	is	a	collection	of	instructions	that	
performs	a	specific	task	when	executed	by	a	computer.	A	
computer	requires	programs	to	function,	and	typically	
executes	the	program's	instructions	in	a	central	
processing	unit.

Wikipedia

16

https://en.wikipedia.org/wiki/Computer_program

Example:	Bet	on	an	event
if HAS_EVENT_X_HAPPENED() is true:

send(party_A, 1000)

else:

send(party_B, 1000)

17

A	Concise	and	General	Definition	of	
Smart	Contract	(cont’d)

A	smart	contract	is	a	computer	program	executed	in	a	
secure	environment	that	directly	controls	digital	
assets

18

Properties	of	Secure	Environments

• Correctness	of	execution
• The	execution	is	done	correctly,	is	not	tampered

• Integrity	of	code	and	data
• Optional properties

• Confidentiality	of	code	and	data

• Verifiability	of	execution

• Availability	for	the	programs	running	inside

19

Examples	of	Secure	Environments

• Servers	run	by	Trusted	Parties
• Decentralized	computer	network	(i.e. Blockchains)
• Quasi-decentralized	computer	network	(i.e.
Consortium (permission-based) Blockchains)

• Servers	secured	by	trusted	hardware	(e.g. SGX)

20

A	Concise	and	General	Definition	of	
Smart	Contract	(cont’d)

A	smart	contract	is	a	computer	program	executed	in	a	
secure	environment	that	directly	controls	digital	
assets

21

Example
• Legal	contract:	“I	promise	to	send	you	$100	if	your	
GPA	for	this	term	is	4.0”

• Smart	contract:	“I	send	$100	into	a	computer	
program	executed	in	a	secure	environment	which	
sends	$100 to	you	if	your	GPA	for	this	term	is	4.0,	
otherwise	it	eventually	sends	$100 back	to	me”

22

A	Concise	and	General	Definition	of	
Smart	Contract	(cont’d)

A	smart	contract	is	a	computer	program	executed	in	a	
secure	environment	that	directly	controls	digital	
assets

23

What are Digital Assets?

• A	broad category	
• Domain	name

• Website

• E-Money

• Game	items

• Network	bandwidth

• Computation	cycles

• Anything	Tokenizable	(e.g. Gold,	Silver,	Stock	share,	Art,	etc)

• …

24

Smart Contract-based Application, an Example:
Escrow Service for Exchange

25

Another Application Example of Smart Contract:
Multi-Signature

26

• Require	M	out	of	N	“owners”	to	agree	for	a	particular	
Digital	Asset	to	be	transferred:

• Intra-organizational	Use	Cases

• Make	sense		even	for	some	Use	Cases	involved	only	1	single	

Individual,	e.g.

• Two-Factor	Authentication
• Two	private	Signing	Keys	stored	in	different	storage	media/	
system…

A	lot	of	other	Interesting	Applications	of	
Smart	Contracts

• Individual/intra-organizational
• Complex	access	policies	depending	on	amount,	withdrawal	

limits,	etc

• Dead	man’s	switch,	“digital	will”

• e.g.,	When	the	owner	dies,	transfer	all	assets	to	

someone

• General
• Prediction	markets

• Insurance

• Micro-payments	for	computational	services	(file	storage,	

bandwidth,	computation,	etc)

• Games	Puzzles	with	Incentives

• Gambling	and	Decentraized Casinos
27

General	Theme	of	these	Applications:
Decentralized	Exchange

• Permissionless Blockchain =>	Decentralization
=>	Democratization	??		

• Democratization	access	to	Financial	Services
• How	do	you	buy/sell	Foreign	Currencies	now	?
• How	“Sharing	Economy	Applications”	(SEA)	works	?

• Airbnb,	Zipcar,	Uber

• Decentralized	Exchange	can	provide	the	platform	for	
“SEA”
• People	exchange	goods/services/assets	among	themselves	

over	a	decentralized	platform,	i.e. a	Blockchain,	instead	of	

via	a	dealer	or	centralized	authorities.	

28

29

Also	see:	The	Web3.0	idea	proposed	by	Gavin	Wood	(co-founder	of	Ethereum)
https://gavwood.com/dappsweb3.html ;	https://gavwood.com/web3lt.html
https://medium.com/@gavofyork/why-we-need-web-3-0-5da4f2bf95ab

Another	Example	(Idea):	QueenBee:	
Decentralized		Search	on	Decentralized	Web

https://gavwood.com/dappsweb3.html

Why	are	they	called	“Smart”	Contracts	?

30

• Automated processing
• Facilitate,	Verify	and/or	Enforce	the	Execution	of	a	

contract

• Trust reduction
• Trust	the	Secure	Execution	Environments,	not	

depending	on	a	very	large	number	of	Contract	

Enforcement	mechanisms

• Trackable and	Irreversible
• Unambiguous,	terms	clearly	expressed	in	code

• Question:	how	to	express	terms	clearly	in	code?

Smart	Contracts	vs	Legal	Contracts

31

Legal Smart

Specification Natural	language	+	

“legalese”

Code

Identity	&	Consent Signatures Digital	signatures

Dispute	resolution Judges,	Arbitrators Decentralized	

platform

Nullification By	Judges ????

Payment Carried	out	by	

parties	separately

Built-in

Escrow Trusted	third	party,	

settled	in	$

Built-in

Smart	Contracts	vs	Legal	Contracts
• A	smart	contract	is	more	like	a	vending	machine

• Follow	predetermined	rules

Legal	contracts Smart	contracts
Good	at	subjective	(i.e.

requiring	human	

judgement)	claims

Good	at	objective	(i.e.

mathematically	evaluable)	

claims

High	cost Low	cost

May	require	long legal	

process

Fast	and	automated

Relies	on	penalties Relies	on	

collateral/security	

deposits

Jurisdiction-bound Potentially	International 32

Smart	Contracts	vs	Legal	Contracts

• Smart	contracts	are	not	very	effective	for	loans
• Has	the	capital	to	provide	liquid	collateral	for	a	loan, do	

not	need	the	loan	in	the	first	place

• Can	use	illiquid	collateral	though	(eg.	domain	names)

• Legal	contracts	are	not	very	effective	for	the	anti-spam	use	

case	

• Amounts	at	stake	are	so	small

• Spammers	can	locate	themselves	in	favorable	jurisdictions	

and	evade	detection

33

Ethereum:
The First Blockchain-based

Smart Contract Platform

Ethereum

• Blockchain with expressive programming
language
– Programming language makes it ideal for smart

contracts
• Why? (back then, circa 2016)

– Most public blockchains are cryptocurrencies
• Mainly designed for transferring coins between

users
– Smart contracts enable much more applications

35

About Ethereum

Crowdfunded ~$20M in ~ a month
Popularized a grand vision of

“generalized” cryptocurrency

Flexible scripting language
“pyethereum” simulator, 2014

Co-founder of Ethereum:
Vitaly Dmitriyevich “Vitalik” Buterin

Analogy: Most existing blockchain
protocols were designed like

OR THIS

37

Why not make a protocol that works like

OR THIS OR THIS

38

How Ethereum Works

• Two types of account:
– Normal account like in Bitcoin,

• aka Externally Owned Account (EOA)
• has balance and address

– Smart Contract account
• like an object: containing (i) code, and (ii) private storage

(key-value storage)
• Code can

– Send ETH to other accounts
– Read/write storage
– Call (ie. start execution in) other contracts

39

Transactions in Ethereum

• Normal transactions like Bitcoin transactions
– Send tokens between accounts

• Transactions to create contracts
– By submitting the “code” of the contract (as a software object) to the

Ethereum blockchain
• Transactions to contracts

– like function calls to objects
– specify which object you are talking to, which function, and what

data (if possible)
• How to give incentives for the Community to

i) Execute the transactions (i.e. to run the function of the object) and
ii) Broadcast and/or verify the result(s) of the execution of the function
call ?

=> Pay the Miners – Just like in the Bitcoin Blockchain !

40

Ethereum’s Account-based Model
vs. Bitcoin’s UTXO Model

41

DNS: The “Hello World” of Ethereum

data domains[](owner, ip)

def register(domainname):
if not self.domains[domainname].owner:

self.domains[domainname].owner = msg.sender

def set_ip(domainname, ip):
if self.domains[domainname].owner ==

msg.sender:
self.domains[domainname].ip = ip

Private
Storage

Can be invoked by
other accounts

42

Ethereum Languages

Ethereum VM (EVM)
Bytecode

Stack-oriented
Language

Lower-Level
Language

Serpent
(Deprecated) Solidity

Looks like scheme
(functional, macros)

Looks like Javascript,
(Types, Invariants)Looks like python

Looks like Forth.
Defined in the Yellowpaper
http://gavwood.com/paper.p
df

Source: Andrew Miller 43

Vyper
(Upcoming)

http://gavwood.com/paper.pdf

The Solidity Language

● Currently the most common (default) language used for Ethereum
Smart Contract Programming

● Syntax looks like JavaScript
● Contracts look like classes/objects
● Static typing

○ Most types can be cast e.g. bool(x)
● bool, uint8, uint16, ... uint256, int8, ... int256
● address
● string
● byte[]
● mapping(keyType => valueType)

Solidity Contract programming model

- Contract class

Create an object of

this class by making a

transaction

- Define functions you can

call

Workflow

46

60606040526040516102503
80380610250833981016040
528........

PUSH 60
PUSH 40
MSTORE
PUSH 0
CALLDATALOAD

.....What you write

What other see on
the blockchain

What people get from
the disassembler

Transactions in Ethereum

• Normal transactions like Bitcoin transactions
– Send tokens between accounts

• Transactions to create contracts
• Transactions to contracts

– like function calls to objects
– specify which object you are talking to, which function,

and what data (if possible)

47

Transactions

• nonce (anti-replay-attack)
• to (destination address)
• value (amount of ETH to send)
• data (readable by contract code)
• gasprice (amount of ether per unit gas)
• startgas (maximum gas consumable)
• v, r, s (ECDSA signature values)

48

How to Create a Contract?

• Submit a transaction to the blockchain
– nonce: previous nonce + 1
– to: empty
– value: value sent to the new contract
– data: contains the code of the contract
– gasprice (amount of Ether (ETH) per unit gas)
– startgas (maximum gas consumable)
– v, r, s (ECDSA signature values)

• If tx is successful
– Returns the address of the new contract (derived from

Creator Address and nonce)

49

How to Interact With a Contract?

• Submit a transaction to the blockchain
– nonce: previous nonce + 1
– to: contract address
– value: value sent to the new contract
– data: data supposed to be read by the contract
– gasprice (amount of ether per unit gas)
– startgas (maximum gas consumable)
– v, r, s (ECDSA signature values)

• If tx is successful
– Returns outputs from the contract (if applicable)

50

Blockchain State

Address Balance (BTC)

0x123456… 10

0x1a2b3f… 1.0

0xab123d… 1.1

Ethereum’s state consists of
key value mapping addresses
to account objects

Address Object

0x123456… X

0x1a2b3f… Y

0xab123d… Z

Bitcoin’s state consists of key
value mapping addresses to
account balance

51Blockchain != Blockchain State

Account Object

• Every account object contains 4
pieces of data:
– Nonce

• If the account is an Externally
Owned Account, this number
represents the number of
transactions sent from the
account’s address. If the
account is a contract account,
the nonce is the number of
contracts created by the
account.

– Balance
– Code hash (code = empty string

for normal accounts)
– Storage trie root 52

Data-structure of the Ethereum Blockchain

Source: https://ethereum.stackexchange.com/questions/268/ethereum-block-architecture

Data-structure of the Ethereum Blockchain

Source: https://ethereum.stackexchange.com/questions/268/ethereum-block-architecture

Tx-nTx-1

Block Mining

Miners

Tx-2

Block

A set of TXs

Previous block

New State Root

Receipt Root

Nonce

SHA3(Block) < D Broadcast
Block

55

Verify transactions &
execute all code to

update the state

Code execution

• Every (full) node on the blockchain processes every
transaction and stores the entire state

P6

P5

P4

P3

P2

P1

This is a new
block!

I’m a leader

This is a new
block!

This is a new
block!

This is a new
block!

This is a new
block!

This is a new
block! 56

Data-structure of the Ethereum Blockchain

Source: https://ethereum.stackexchange.com/questions/268/ethereum-block-architecture

Architecture of the
Ethereum Virtual
Machine (EVM)
and its Code
Execution Context

DoS Attack Vector

• The “Halting Problem”
– Cannot tell whether or not a program will run infinitely

• A malicious miner can DoS attack full nodes by
including lots of computation in their txs

• Full nodes attacked when verifying the block

uint i = 1;
while (i++ > 0) {

donothing();
}

59

Solution: “Gas”

• Charge fee per
computational step
(“gas”)
– Special gas fees for

operations that take up
storage

60

Gas in Ethereum is a necessary evil

● All miners and full nodes must evaluate all transactions
○ limit computation cost

● All miners must store all state
○ limit storage use

● Short-cut the halting problem
○ There is an upper GAS_LIMIT, so all programs will halt

Sender has to pay for the gas

• gasprice: amount of Ether (ETH) per unit gas
• startgas: maximum gas consumable

– If startgas is less than needed
• Out of gas exception, revert the state as if the TX has never

happened BUT this failed TX will still be recorded in the
Ethereum blockchain

• Sender still pays all the gas

• TX fee = gasprice * consumedgas
• Gas limit: similar to block size limit in Bitcoin

– Total gas spent by all transactions in a block < Gas Limit

62

All transactions specify START_GAS, GAS_PRICE

1. If START_GAS ⨉ GAS_PRICE > caller.balance, halt

2. Deduct START_GAS ⨉ GAS_PRICE from caller.balance

3. Set GAS = START_GAS

4. Run code, deducting from GAS

5. For negative values, add to GAS_REFUND

a. GAS only decreases

6. After termination, add GAS_REFUND to caller.balance

Back of envelope numbers
a Solidity programmer should know

Average gas price (as of March ‘18): https://etherscan.io/chart/gasprice

http://ethgasstation.info/

~20gigawei = 0.00000002 ether

Price of Ether (as of March ‘18):

~$500 per Ether

Cost per transaction:
21000 gas “base” for a transaction = $0.21 (21 cents per transaction)

Cost of data:
~75 gas per byte of data stored = $0.77/kB (77 cents per kilobyte)

Gas limit per block: 4,000,000 ⇒ 53 kilobytes per block (2.66MB per 10 min)

https://etherscan.io/chart/gasprice
http://ethgasstation.info/

http://ethgasstation.info/

http://ethgasstation.info/

Polite contracts call revert on errors

uint8 numCandidates;
uint32 votingFee;
mapping(address => bool) hasVoted;
mapping(uint8 => uint32) numVotes;

/// Cast a vote for a designated candidate
function castVote(uint8 candidate) {

if (msg.value < votingFee)
return;

if (hasVoted[msg.sender])
revert();

hasVoted[msg.sender] = true;
numVotes[candidate] += 1;

}

revert() ensures no effects persisted
except gas consumption

Out-of-gas exceptions are bad news

● State reverts to previous value

○ Except that START_GAS * GAS_PRICE is still deducted

Built-in support for calling other contracts

● a.transfer(x) sends x to address a
○ returns 0 if this fails due to call stack

● foo.call.value(3).gas(20764)(bytes4(sha3("bar()")));
○ also callcode, delegatecall
○ default is 0 value, all available gas

● new constructor deploys a new contract
○ Careful, it’s expensive!

Remember:
Smart contracts code is fixed forever.
Calls required to update functionality

Built-in support for calling other contracts (cont’d)

- Contract member variables if public, automatically defines a
“getter”

- Modifiers payable, constant, returns(), also modifiers can be user defined

- Macros / Internal Functions internal modifier -> does not require a
“message”

- Type conversions int(x), uint256(x), bool(x)

- Structs, arrays, mappings, memory vs storage

array: int[2] x; hashmap mapping (int[2] => int);

- Throwing exceptions throw; // exceptions
contain no data

- Units (currency: “eth”, “wei”, etc.) 3 * (2 eth)

5

Callers can choose how much gas to send

A:
function a():

Assert msg.gas == 100;
x = B.b.gas(10)()
return x + “ World!”

B:
function b() {
assert msg.gas == 10
y = C.c.gas(5)()

require(y == 0);
// out of gas

return “Hello”

C:
function c():
assert msg.gas == 5
while (true) {

Loop
}

return “Bonjour”Out of gas
“Hello”

100
10

“Hello World!”

(pseudocode: exact syntax used here does not work in Solidity)

Economics of gas are similar to transaction fees

● Miners choose transactions based on GAS_PRICE

● In theory, they should not care which opcodes are used

○ In practice, some “overpriced” opcodes may be preferred

● Maximum gas limit per block

○ Miners can slowly raise it, each block votes

References for Solidity syntax

- Storage and stateful methods
public instance variables, public methods
constant, pure, view methods

https://solidity.readthedocs.io/en/v0.4.21/contracts.html#functions
https://solidity.readthedocs.io/en/v0.4.21/contracts.html#visibility-and-getters

- Control flow, for loops and if statements
https://solidity.readthedocs.io/en/v0.4.21/control-structures.html#control-structures

https://solidity.readthedocs.io/en/v0.4.21/contracts.html%23functions
https://solidity.readthedocs.io/en/v0.4.21/contracts.html%23visibility-and-getters
https://solidity.readthedocs.io/en/v0.4.21/control-structures.html%23control-structures

- Events and printf debugging
event Debug(string); … emit Debug(“fail at point A”)

https://solidity.readthedocs.io/en/v0.4.21/contracts.html#events

Debugging strategies:
1. Use Log Events
2. Use pure functions
3. Use the Remix debugger

References for Solidity syntax (cont’d)

https://solidity.readthedocs.io/en/v0.4.21/contracts.html%23events

- Declaring variables and conversion between types
https://solidity.readthedocs.io/en/v0.4.21/types.html#value-types
https://solidity.readthedocs.io/en/v0.4.21/types.html#conversions-between-elementary-types

- Integers can overflow https://github.com/OpenZeppelin/zeppelin-
solidity/blob/master/contracts/math/SafeMath.sol

- Mappings
mapping (address => bool) hasAlreadyVoted;

https://solidity.readthedocs.io/en/v0.4.21/types.html#mappings

References for Solidity syntax (cont’d)

https://solidity.readthedocs.io/en/v0.4.21/types.html%23value-types
https://solidity.readthedocs.io/en/v0.4.21/types.html%23conversions-between-elementary-types
https://github.com/OpenZeppelin/zeppelin-solidity/blob/master/contracts/math/SafeMath.sol
https://solidity.readthedocs.io/en/v0.4.21/types.html%23mappings

Clever implementation of maps in Solidity

mapping(string => uint256) balances;
Alice 15

Bob 15

Joe 100

0 2256

H(“balances”|”Bob”) H(“balances”|”Joe”) H(“balances”|”Alice”)

15 15100

● Every item requires at least one 256-bit word
● Balances[“Andrew”] is 0 if “Andrew” doesn’t exist or if “Andrew” has 0 balance
● To delete a key, set balances[“Andrew’] = 0
● Cannot delete an entire map!

- Payable and transferring currency
address x; x.transfer(msg.value)

https://solidity.readthedocs.io/en/v0.4.21/types.html#address
https://solidity.readthedocs.io/en/v0.4.21/units-and-global-variables.html#address-related

- Arrays in storage and in memory
https://solidity.readthedocs.io/en/v0.4.21/types.html#reference-types
https://solidity.readthedocs.io/en/v0.4.21/types.html#arrays

References for Solidity syntax (cont’d)

https://solidity.readthedocs.io/en/v0.4.21/types.html%23address
https://solidity.readthedocs.io/en/v0.4.21/units-and-global-variables.html%23address-related
https://solidity.readthedocs.io/en/v0.4.21/types.html%23reference-types
https://solidity.readthedocs.io/en/v0.4.21/types.html%23arrays

- Calling methods of other contracts, the Gas model
Tx.gas, gasLeft()

https://solidity.readthedocs.io/en/v0.4.21/units-and-global-variables.html#special-variables-and-functions

- Extern / abstract contracts
https://solidity.readthedocs.io/en/v0.4.21/contracts.html#abstract-contracts

- Access controls
msg.sender, tx.origin

https://solidity.readthedocs.io/en/v0.4.21/common-patterns.html?highlight=payable#restricting-access

References for Solidity syntax (cont’d)

https://solidity.readthedocs.io/en/v0.4.21/units-and-global-variables.html%23special-variables-and-functions
https://solidity.readthedocs.io/en/v0.4.21/contracts.html%23abstract-contracts
https://solidity.readthedocs.io/en/v0.4.21/common-patterns.html?highlight=payable%23restricting-access

Solidity gotchas (Many more !!)

● Member variables can be marked public
○ Getter methods automatically provided

● Functions must be marked payable to accept funds
● Member variables go to storage by default

○ Method variables go to memory
● Fallback function()

○ Called if no function specified (e.g. send)
○ Called if non-existent function called

● msg.sender vs. tx.origin

https://solidity.readthedocs.io/en/develop/solidity-in-depth.html

https://solidity.readthedocs.io/en/develop/solidity-in-depth.html

An Example:
Namecoin in Ethereum

What is the Domain Name System?

“Namecoin”: a simplistic DNS replacement
Initially, all names are unregistered.

Anyone can claim an unregistered name.

Once it’s registered, no one can change it.

Namecoin pseudocode

def register(k, v):

if !self.storage[k]: # Is the key not yet taken?

Then take it!

self.storage[k] = v

return(1)

else:

return(0) // Otherwise do nothing

Key challenges in Smart Contract
Design and Implementation:

● Smart contracts on public blockchains can be
trusted for correctness and availability,
but not privacy (yet)

● Blockchain resources are expensive
● On the blockchain, “Code is law”
**Uncertain delays, Race conditions (e.g. Front
Running), Temporary Forks, …
**Obscure and counterintuitive VM rules
=> ** can be (and have been) exploited to cause
Smart Contract “Security” vulnerabilities which
resulted in substantial monetary losses !

• Due to abstraction of semantic
– Transaction ordering dependence
– Reentrancy bug

• Which exploited the DAO
• Obscure VM rules

– Maximum stack depth is 1024: not many devs know
– Inconsistent Exception Handling in EVM

85

Some Security Flaws
(Many more a Solidity Programmer needs to know !)

For details, refer to:
https://ogucluturk.medium.com/the-dao-hack-explained-unfortunate-take-off-of-smart-contracts-
2bd8c8db3562
https://dasp.co
https://www.cryptocompare.com/coins/guides/the-dao-the-hack-the-soft-fork-and-the-hard-fork/

http://www.comp.nus.edu.sg/~loiluu/papers/oyente.pdf
http://hackingdistributed.com/2016/07/13/reentrancy-woes/

86

The Reentrancy Bug which stole 3.5M ETH from DAO ;
Led to a Hard Fork and Split of Ethereum blockchain

[Ethereum Classic (ETC) was born] (circa June-July 2016)

For details, refer to:
https://dasp.co
https://www.cryptocompare.com/coins/guides/the-dao-the-hack-the-soft-fork-and-the-hard-fork/

• Create developer tools
– Smart contract analyser based on symbolic exec: Oyente
– Testing and deployment framework: truffle
– Formal verification for smart contracts: eth-isabelle, why3

• Design better semantic [CCS’16]
• Design a new programming language (Vyper) to

eliminate “dangerous” functions in Solidity
• Educate users
• Idea

– Create security certificates for smart contracts?

87

Ongoing Efforts to mitigate Security Flaws

https://github.com/ethereum/oyente
https://github.com/ConsenSys/truffle
https://github.com/pirapira/eth-isabelle
https://forum.ethereum.org/discussion/3779/formal-verification-for-solidity-contracts

A Popular and Serious Application of
Ethereum Smart Contracts:

Initial Coin Offering (ICO)

ERC20 Tokens

https://medium.com/@jgm.orinoco/understanding-erc-20-token-contracts-a809a7310aa5

§ A Token Contract is a smart contract that contains a map of

account address and their balances

Ø The balance represents a value that is defined by the contract creator,
e.g. the value may represent physical objects, another monetary value
or the holder’s reputation.

Ø This balance is commonly called a token.

§ ERC-20 defines a common set of

features and interfaces for

Token Contracts in Ethereum

NB: ERC = Ethereum Request for Comments

ERC20 defines interfaces for basic token behavior

Basic functionality:

function totalSupply() constant returns (uint256 totalSupply)

function balanceOf(address _owner) constant returns (uint256 balance)

Delegating control:

function transfer(address _to, uint256 _value) returns (bool success)

function transferFrom(address _from, address _to, uint256 _value) returns (bool success)

Delegating control:

function approve(address _spender, uint256 _value) returns (bool success)

function allowance(address _owner, address _spender) constant returns (uint256

remaining)

https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md

Refer to:
https://github.com/ethereumbook/ethereumbook/blob/develop/10tokens.asciidoc
for more details

https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md
https://github.com/ethereumbook/ethereumbook/blob/develop/10tokens.asciidoc

Two-Step Approve & TransferFrom Workflow of
Initial Coin Offering (ICO) of an ERC20 Token

https://github.com/ethereumbook/ethereumbook/blob/develop/10tokens.asciidoc

Two-Step Approve & TransferFrom Workflow of
Initial Coin Offering (ICO) of an ERC20 Token (cont’d)

https://github.com/ethereumbook/ethereumbook/blob/develop/10tokens.asciidoc

For the approve & transferFrom workflow, two transactions are needed. Let’s say that Alice
wants to allow the AliceICO contract to sell 50% of all the AliceCoin tokens to buyers like Bob
and Charlie. First, Alice launches the AliceCoin ERC20 contract, issuing all the AliceCoin to
her own address. Then, Alice launches the AliceICO contract that can sell tokens for ether.
Next, Alice initiates the approve & transferFrom workflow. She sends a transaction to the
AliceCoin contract, calling approve with the address of the AliceICO contract and 50% of the
totalSupply as arguments. This will trigger the Approval event. Now, the AliceICO contract can
sell AliceCoin.

When the AliceICO contract receives ether from Bob, it needs to send some AliceCoin to Bob
in return. Within the AliceICO contract is an exchange rate between AliceCoin and ether. The
exchange rate that Alice set when she created the AliceICO contract determines how many
tokens Bob will receive for the amount of ether sent to the AliceICO contract. When the
AliceICO contract calls the AliceCoin transferFrom function, it sets Alice’s address as the
sender and Bob’s address as the recipient, and uses the exchange rate to determine how
many AliceCoin tokens will be transferred to Bob in the value field. The AliceCoin contract
transfers the balance from Alice’s address to Bob’s address and triggers a Transfer event.
The AliceICO contract can call transferFrom an unlimited number of times, as long as it
doesn’t exceed the approval limit Alice set. The AliceICO contract can keep track of how
many AliceCoin tokens it can sell by calling the allowance function.

https://elementus.io/token-sales-history

https://elementus.io/token-sales-history

Lifecycle of an ICO Pre-launch Token

Presale / private investment

Whitepaper released

Public crowdsale

Optionally: tokens can be traded on exchanges

Development continues...

Product launches, you can use your tokens

Most likely need to
register with SEC!

Typically
implemented with
ERC20

https://www.bloomberg.com/news/articles/2018-04-02/crypto-hedge-fund-bubble-begins-to-deflate-as-returns-tumble

https://news.bitcoin.com/46-last-years-icos-failed-already/

https://www.bloomberg.com/news/articles/2018-04-02/crypto-hedge-fund-bubble-begins-to-deflate-as-returns-tumble
https://news.bitcoin.com/46-last-years-icos-failed-already/

Interested in Dissecting the Useless Ethereum Token ?

https://etherscan.io/address/0x27f706edde3aD952EF647Dd67E24e38CD0803DD6#code

https://uetoken.com/

https://ropsten.etherscan.io/token/0xEFeaEF27c453eB96AEa340d03E1724B81973cD61#balances

You can also build your own tETH-backed ERC20
Token:

https://etherscan.io/address/0x27f706edde3aD952EF647Dd67E24e38CD0803DD6%23code
https://uetoken.com/
https://ropsten.etherscan.io/token/0xEFeaEF27c453eB96AEa340d03E1724B81973cD61%23balances

This is how the “Transfer” method look

Function: transfer(address _to, uint256 _value)

MethodID: 0xa9059cbb

[0]: 000000000000000000000000038716c48535f9035d8578fd35500cc5e8582ba8

[1]: 000172

{
"action": {
"callType": "call",

"from": "0x1b326ad348e19ecfd1406c43d3bf7a95547ac55c",
"gas": "0x6e25",

"input": "0xa9059cbb

000000000000000000000000038716c48535f9035d8578fd35500cc5e8582ba8

000172",

"to": "0xefeaef27c453eb96aea340d03e1724b81973cd61",
"value": "0x0"

},

Many ERC20 templates on the Internet

This is a widely adopted standard, and so tons of tools/service will
???“just work”??? if you adhere to ERC20 standard
Beware: any bug for a popular template can jeopardize all smart
contracts/ ICOs of that template !!

http://lmgtfy.com/?q=erc20+token+template

https://github.com/bitfwdcommunity/Issue-your-own-ERC20-
token/blob/master/contracts/erc20_tutorial.sol

http://lmgtfy.com/?q=erc20+token+template
https://github.com/bitfwdcommunity/Issue-your-own-ERC20-token/blob/master/contracts/erc20_tutorial.sol

padding value (little endian, 32 bytes)

Reality: compiled EVM interprets all data as array of 32-byte blocks

var callData = "0"*12 + ($(#userAddr).val()) + toHex($(#amt).val(), 32)

The Short Address Attack on ERC20 token exchanges
Several online exchanges allow you to transfer tokens from a web form

Assumption: All interactions with contracts respects function
interface

function transfer(address _to, uint256 _value) returns (bool success)

20 byte address

0000...0000 AAAAAAAA...AAAAAAAA 00000000...0000000055Example:

Attack: attacker finds a key for an address of the form 0xAAAAAAAA...AAAAA000
and types the 17-byte prefix into the #userAddr field

0000...0000 AAAAAAAA...AAAAA000 00000...0000000055000

For details, refer to:
https://blog.golemproject.net/how-to-find-10m-just-by-reading-the-blockchain/
https://vessenes.com/the-erc20-short-address-attack-explained/
https://www.reddit.com/r/ethereum/comments/6r9nhj/cant_understand_the_erc20_short_address_attack/

https://blog.golemproject.net/how-to-find-10m-just-by-reading-the-blockchain/
https://vessenes.com/the-erc20-short-address-attack-explained/
https://www.reddit.com/r/ethereum/comments/6r9nhj/cant_understand_the_erc20_short_address_attack/

Many ERC20 Tokens are stuck in
Unspendable Contracts

https://www.reddit.com/r/ethereum/6e8y9o/

https://www.reddit.com/r/ethereum/6e8y9o/

Yet another Story on ERC20 Token Thefts

Details available at:

https://medium.com/@peckshield/alert-new-batchoverflow-bug-in-multiple-erc20-smart-contracts-cve-2018-
10299-511067db6536

https://news.bitcoin.com/exchanges-suspend-erc20-token-deposits-after-discovery-of-smart-contract-bug/

https://news.bitcoin.com/exchanges-suspend-erc20-token-deposits-after-discovery-of-smart-contract-bug/

Yet another Story on ERC20 Token Thefts
due to “Integer Overflow” bug

Details available at:

https://medium.com/@peckshield/alert-new-batchoverflow-bug-in-multiple-erc20-smart-contracts-cve-2018-
10299-511067db6536

https://news.bitcoin.com/exchanges-suspend-erc20-token-deposits-after-discovery-of-smart-contract-bug/

https://news.bitcoin.com/exchanges-suspend-erc20-token-deposits-after-discovery-of-smart-contract-bug/

Some Anecdotes / Critical Comments / Responses on the

Business Practice of

Cryptocurrencies, ICOs, DAOs, NFTs, etc

! Dan Olson, “Line Goes Up — The Problem With NFTs”, Jan 22, 2022:
https://www.youtube.com/watch?v=YQ_xWvX1n9g

! A Response from Tasha Che - a "Crypto Expert", Feb 3, 2022:
https://time.com/6144332/the-problem-with-nfts-video/

https://www.youtube.com/watch?v=YQ_xWvX1n9g
https://time.com/6144332/the-problem-with-nfts-video/

Conclusions
! Smart Contract generalizes the use of Blockchain beyond

transferring cryptocurrency among different users
! Ethereum is the 1st general purpose programmable platform

built to enable blockchain-based Smart Contracts
! A Smart Contract platform enables Decentralized Exchange/

Trading of Digital Assets in an Automated manner
! The notion of “Gas” is introduced in Ethereum to side-step

the potential Denial-of-Service attacks due to the “Halting
Problem”.

! A lot of serious Gotchas in the design and implementation of
Solidity/ Smart Contracts due to System/Programming
Language idiosyncrasies + Bugs
" Being a popular (ICO) template does not mean its safe !

! If you want to design/ program Smart Contracts for a living,
you need to know much more and deeply about Smart
Contract Security, Vulnerabilities and Pitfalls

Additional References on
Smart Contract Security and Best Practices

● Decentralized Application Security Project Top 10 of 2018,
https://dasp.co/index.html

● Smart Contract Best Practices,
https://consensys.github.io/smart-contract-best-practices/

● SWC Registry: Smart Contract Weakness Classification and
Test Cases, https://swcregistry.io

Recommended Texts/ References on
Bitcoin, Ethereum and Smart Contracts

● Satoshi Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash System,” Oct 2008,
https://bitcoin.org/bitcoin.pdf

● Arvind Narayanan, Joesph Bonneau, Edward Felten, Andrew Miller, Steven Goldfeder, Bitcoin
and Cryptocurrency Technologies - A Comprehensive Introduction, Princeton University Press,
2016, https://bitcoinbook.cs.princeton.edu

● Preethi Kasireddy, “How does Ethereum work anway”, Sept 13,
2017,https://www.preethikasireddy.com/post/how-does-ethereum-work-anyway

● Andreas M. Antonopoulos, Mastering Bitcoin, 2nd Edition, Published by O'Reilly, July 2017,
https://github.com/bitcoinbook/bitcoinbook

● The Ethereum White Paper - A Next-Generation Smart Contract and Decentralized Application
Platform, https://github.com/ethereum/wiki/wiki/White-Paper

● Andreas M. Antonopoulos, Gavin Wood, Mastering Ethereum - Building Smart Contracts and
DApps, Published by O'Reilly, 2018,
https://github.com/ethereumbook/ethereumbook/blob/develop/book.asciidoc

● ERC 721, ERC777, ERC1155: Standard Templates for NFTs:
https://ethereum.org/en/developers/docs/standards/tokens/erc-721/
https://docs.openzeppelin.com/contracts/3.x/erc1155

● Programming Examples with ERC 721: https://docs.openzeppelin.com/contracts/4.x/erc721

● Some useful Blockchain and Smart Contract design Patterns:
https://research.csiro.au/blockchainpatterns/general-patterns

https://bitcoin.org/bitcoin.pdf
https://bitcoinbook.cs.princeton.edu
https://www.preethikasireddy.com/post/how-does-ethereum-work-anyway
https://github.com/bitcoinbook/bitcoinbook
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereumbook/ethereumbook/blob/develop/book.asciidoc
https://ethereum.org/en/developers/docs/standards/tokens/erc-721/
https://docs.openzeppelin.com/contracts/3.x/erc1155
https://docs.openzeppelin.com/contracts/4.x/erc721
https://research.csiro.au/blockchainpatterns/general-patterns

